Structural Classification of $RAO_3(MO)_n$ Compounds (R = Sc, In, Y, or Lanthanides; A = Fe(III), Ga, Cr, or AI; M = Divalent Cation; n = 1-11)

NOBORU KIMIZUKA* AND TAKAHIKO MOHRI

National Institute for Research in Inorganic Materials, 1-1, Namiki, Tsukuba-shi, Ibaraki-ken, 305 Japan

Received March 7, 1988; in revised form August 18, 1988

A series of new compounds $RAO_3(MO)_n$ (n = 1-11) having spinel, YbFe₂O₄, or InFeO₃(ZnO)_n types of structures were newly synthesized (R = Sc, In, Y, Lu, Yb, Tm, or Er; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Fe(II), Co, Ni, Zn, or Cd) at elevated temperatures. The conditions of synthesis and the lattice constants for these compounds are reported. The stacking sequences of the InO_{1.5}, (FeZn)O_{2.5}, and ZnO layers for InFeO₃(ZnO)₁₀ and the TmO_{1.5}, (AlZn)O_{2.5}, and ZnO layers for TmAlO₃(ZnO)₁₁ are presented, respectively. The crystal structures of the (RAO_3)_m(MO)_n phases (R = Sc, In, Y, or lanthanide elements; A = Fe(III), Ga, Cr, or Al; M = divalent cation elements; m and n = integer) are classified into four crystal structure types (K₂NiF₄, CaFe₂O₄, YbFe₂O₄, and spinel), based upon the constituent cations R, A, and M. © 1989 Academic Press, Inc.

Introduction

It may be important to classify the crystal structures of inorganic compounds systematically and analyze the relations between the crystal structures and their constitutent cations. Wells (1) classified the XY_2O_4 type of compounds based upon the coordination numbers of oxygen of both X and Y cations.

The RFe_2O_4 compound in the R_2O_3 -Fe₂O₃-FeO system (R = Y, Lu, Yb, Tm, Er, and Ho) is a thermochemically stable one which has a layered structure at elevated temperatures (2, 3). In this compound, the Fe ion is located in a trigonal bipyramid of oxygen and the R ion is located in an octahedral one. The constituent cations forming $RAO_3(MO)$ compounds with RFe_2O_4 type of structure which have been reported so far, are as follows: R =Sc, In, Y, Lu, Yb, Tm, Er, and Ho; A =Fe(III), Ga, or Al; M = Mg, Mn, Co, Fe(II), Cu, Zn, or Cd) (4-7). The new classification of XY_2O_4 type of compounds including YbFe₂O₄ type of compounds is shown in Table I which is a modification of the table originally presented by Wells (1). The phase transformation between Yb Fe_2O_4 type and spinel type was observed in $InGaMnO_4$ (7). The higher temperature phase has the spinel structure and the lower one has the $YbFe_2O_4$ structure. In the Yb₂O₃-Fe₂O₃-FeO system at 1550°C, (Yb FeO₃)₂FeO₃ (YbFeO₃)₃FeO₃ (YbFeO₃)₄ FeO ... in addition to YbFe₂O₄ compound were reported (8-10). InFeO₃(ZnO)_n compounds (n = 1-9) in the In₂O₃-Fe₂O₃-ZnO system were synthesized at 1300-1450°C (11), and the stacking sequences of

^{*} To whom all correspondence should be addressed. 0022-4596/89 \$3.00

The Classification of the Crystal Structures of XY_2O_4 Type of Compounds									
CN (Y): CN (X)	4	5	6	8	9 and/or 10				
4	phenacite		olivine spinel	K ₂ WO ₄	β-K₂SO₄				
6		YbFe ₂ O ₄	$\mathbf{Sr}_{2}\mathbf{PbO}_{4},\mathbf{Ca}_{2}\mathbf{IrO}_{4},\mathbf{etc.}$		K2NiF4				
8			CaFe ₂ O ₄ CaTi ₂ O ₄						

TABLE I

Note. CN (X), coordination number of X; CN (Y), coordination number of Y.

the $InO_{1.5}$, (FeZn) $O_{2.5}$, and ZnO layers in these compounds were presented, based upon the construction rules for the crystal structures of the $(YbFeO_3)_nFeO$ (n = 1,2, 3 . . .). The characteristic features of the crystal structures of the $InFeO_3(ZnO)_n$ are summarized in Table II.

In the present paper, we report the conditions of synthesis, the crystal structures, and the lattice constants of $RAO_3(ZnO)_n$ (R = Sc, In, Y, Lu, Yb, Tm, or Er; A =Fe(III), Ga, or Al; n = 1-11) and their related compounds having spinel, YbFe₂O₄, or $InFeO_3(ZnO)_n$ type of crystal structures and show the dependence of the crystal structures of K₂NiF₄, CaFe₂O₄, YbFe₂O₄, and spinel types upon the constituent cations.

Experimental

The experimental method, starting compounds, and equipment that we used in the present work are described elsewhere (11).

	Lattice constant (Å)								
Compounds	a	с	group	z	и	w	x	р	c (Å)/p
InFeZnO₄	3.321(1)	26.09(1)	R3m	3	1 × 3	1 × 3	0	12	2.174
InFeZn ₂ O ₅	3.309(1)	22.57(1)	P63/mmc	2	1 × 2	1 × 2	1 × 2	10	2.257
InFeZn ₃ O ₆	3.300(1)	41.68(1)	R3m	3	1 × 3	1×3	2×3	18	2.316
InFeZn ₄ O ₇	3.294(1)	32.99(1)	$P6_3/mmc$	2	1×2	1×2	3×2	14	2.356
InFeZn ₅ O ₈	3.288(1)	57.28(1)	$R\overline{3}m$	3	1×3	1 × 3	4×3	24	2.387
InFeZn ₆ O ₉	3.283(1)	43.36(1)	P63/mmc	2	1 × 2	1×2	5×2	18	2.409
InFeZn ₇ O ₁₀	3.279(1)	72.85(1)	R3m	3	1 × 3	1×3	6 × 3	30	2.428
InFeZn ₈ O ₁₁	3.276(1)	53.75(1)	P63/mmc	2	1×2	1 × 2	7×2	22	2.443
InFeZn ₉ O ₁₂	3.274(1)	88.41(1)	R3m	3	1×3	1×3	8 × 3	36	2.456

TABLE II THE SUMMARY OF THE CRYSTAL DATA OF INFO. (7nO)

Note. z, Molecular numbers in a unit cell; u, number of InO_{15} layers; w, number of $(FeZn)O_{25}$ layers; x, number of ZnO layers; p, number of oxygen layers.

 Er_2O_3 (99.9%), CdO(99.9%), and Fe metal powder (99.99%) were used. For preparing $RGaO_3$ (FeO) compounds, we sealed a mixture of R_2O_3 : Ga_2O_3 : Fe_2O_3 : Fe = 1:1:2/3:2/3 (in mole ratio) in an evacuated silica tube (R = In, Lu, Yb, or Tm). After heating each sample for a prespecified period, it was rapidly cooled in water. The other samples, $RAO_3(MO)_n$ ($M \neq Fe$) were prepared in sealed Pt tubes. The chemical reactions between the tubes and the powder samples were checked visually. We could not see any substantial reactions between them. The sample and tube was carefully weighed before and after each heat treatment. No volatilization effect during each heat treatment was observed. We determined each stoichiometry for the obtained compounds from the mixing ratio of starting compounds and affirmed it by each of their crystal structure models.

The identification and the measurement of the lattice constants for all of the samples obtained were made by means of a powder X-ray diffraction method (11), and some of the samples were supplied for electron diffraction observation.

Results and Discussion

[I] In the Lu₂O₃-A₂O₃-ZnO system (A = Fe, Ga, or Al), we obtained LuFeO₃(ZnO)_n (n = 1-7 and 9), LuGaO₃(ZnO)_n (n = 1-8), and LuAlO₃(ZnO)_n (n = 6-7 and 9) which are isostructural with InFeO₃(ZnO)_n (11). The conditions of synthesis and the lattice constants for each compound are shown in Table IIIa. All LuFeO₃(ZnO)_n are brown and all LuGaO₃(ZnO)_n and LuAlO₃(ZnO)_n are colorless. These results agree with the presence of *d* electrons in Fe ions, and their lack in Al and Ga ions.

[II] In the Yb₂O₃-A₂O₃-ZnO system (A = Fe, Ga, or Al), we obtained YbFe O₃(ZnO)_n (n = 1-7 and 9), YbGa O₃(ZnO)_n (n = 1-7 and 9), and YbAl O₃(ZnO)_n (n = 9 and 11) which are iso-

TABLE IIIa

THE CONDITIONS OF SYNTHESIS AND THE LATTICE
Constants for the Compounds Obtained in the
$Lu_2O_3 - A_2O_3 - ZnO$ System ($A = Fe, Ga, or Al$)

Compound LuFeZnQ4 LuFeZn3O6 LuFeZn3O6 LuFeZn4O7 LuFeZn5O9 LuFeZn9O12 LuFeZn9O12 LuFeZn9O12 LuGaZn4O7 LuGaZn4O7 LuGaZn4O7 LuGaZn609	Tomessature	Heating	Lattice constant (Å)			
	(°C)	(day)	а	с		
LuFeZnO ₄	1350	2	3.411(1)	25.39(1)		
LuFeZn ₂ O ₅	1300	11	3.377(1)	22.13(1)		
LuFeZn ₃ O ₆	1450	3	3.358(1)	40.99(1)		
LuFeZn ₄ O ₇	1450	2	3.327(1)	32.53(1)		
LuFeZn ₅ O ₈	1450	2	3.327(1)	56.35(1)		
LuFeZn ₆ O ₉	1450	1	3.317(1)	42.96(1)		
LuFeZn7O10	1450	3	3.310(1)	72.22(1)		
LuFeZn ₉ O ₁₂	1450	3	3.297(1)	87.84(1)		
LuGaZnO ₄	1350	3	3.400(1)	25.25(1)		
LuGaZn ₂ O ₅	1300	5	3.365(1)	22.05(1)		
LuGaZn ₃ O ₆	1450	6	3.344(1)	40.88(1)		
LuGaZn ₄ O ₇	1450	6	3.328(1)	32.45(1)		
LuGaZn ₅ O ₈	1450	5	3.320(1)	56.44(1)		
LuGaZn ₆ O ₉	1450	1	3.313(1)	42.80(1)		
LuGaZn7O10	1450	5	3,307(1)	72.01(1)		
LuGaZn ₈ O ₁₁	1450	6	3.301(1)	53.17(1)		
LuAlZn ₆ O ₉	1450	8	3.313(1)	42.82(1)		
LuAlZn ₇ O ₁₀	1450	3	3.288(1)	71.54(1)		
LuAlZngO12	1422	4	3.279(1)	87.36(4)		

structural with InFeO₃(ZnO)_n. The conditions of synthesis and the lattice constants for each compound are shown in Table IIIb. All YbFeO₃(ZnO)_n are brown and all Yb GaO₃(ZnO)_n and YbAlO₃(ZnO)_n are colorless.

[III] In the Tm₂O₃-A₂O₃-ZnO system (A = Fe or Ga), we obtained TmFeO₃(ZnO)_n (n = 1 and 5-10) and TmGaO₃(ZnO)_n (n = 1-7 and 9) which are isostructural with In FeO₃(ZnO)_n. TmFeO₃(ZnO)₁₀ is isostructural with InFeO₃(ZnO)₁₀ which will be shown in [V]. The conditions of synthesis and the lattice constants for each compound are shown in Table IIIc. All Tm FeO₃(ZnO)_n are brown and all TmGaO₃ (ZnO)_n are colorless.

[IV] In the $Er_2O_3-A_2O_3-ZnO$ system (A = Fe or Ga), we obtained $ErFeO_3(ZnO)_9$ and $ErGaO_3(ZnO)_n$ (n = 4 and 5) which are isostructural with $InFeO_3(ZnO)_n$. Er $FeO_3(ZnO)_9$ is brown and $ErGaO_3(ZnO)_n$ are colorless. The conditions of synthesis

TABLE IIIb

The Conditions of Synthesis and the Lattice Constants for the Compounds Obtained in the $Yb_2O_3-A_2O_3-ZnO$ System (A = Fe, Ga, or Al)

Courses	Temperature	Heating	Lattice constant (Å)		
Compound	(°C)	(day)	a	с	
YbFeZnO4	1350	2	3.425(1)	25.28(1)	
YbFeZn ₂ O ₅	1422	4	3.391(1)	22.05(1)	
YbFeZn ₃ O ₆	1450	3	3.368(1)	40.84(1)	
YbFeZn ₄ O ₇	1450	3	3.347(1)	32.45(1)	
YbFeZn ₅ O ₈	1450	3	3.328(1)	56.50(1)	
YbFeZn ₆ O ₉	1450	5	3.310(1)	42.92(1)	
YbFeZn7O10	1450	1	3.307(1)	72.19(1)	
YbFeZn ₉ O ₁₂	1450	3	3.296(1)	87.79(1)	
YbGaZnO4	1350	1	3.415(1)	25.09(1)	
YbGaZn ₂ O ₅	1300	13	3.378(1)	21.98(1)	
YbGaZn ₃ O ₆	1450	2	3.352(1)	40.76(1)	
YbGaZn ₄ O ₇	1450	4	3.334(1)	32.38(1)	
YbGaZn5O8	1450	4	3.322(1)	56.39(1)	
YbGaZn ₆ O ₉	1450	3	3.305(1)	42.80(1)	
YbGaZn7O10	1450	3	3.300(1)	72.07(1)	
YbGaZn ₉ O ₁₂	1450	3	3.296(1)	87.66(1)	
YbAlZn ₉ O ₁₂	1450	4	3.280(1)	87.11(1)	
YbAlZn11O14	1450	4	3.273(1)	102.60(2)	

TABLE IIId

The Conditions of Synthesis and the Lattice Constants for the Compounds Obtained in the $E_{I_2O_3-A_2O_3-ZnO}$ System (A = Fe or Ga)

	Temperature	Heating	Lattice constant (Å)			
Compound	(°C)	(day)	a	с		
ErFeZn ₉ O ₁₂	1450	4	3.288(1)	87.88(3)		
ErGaZn ₄ O ₇	1450	4	3.310(1)	32.51(1)		
ErGaZn5O8	1450	4	3.298(1)	56.61(1)		

TABLE IIIe

The Condition of Synthesis and the Lattice Constants for the Compound Obtained in the $In_2O_3-Fe_2O_3-ZnO$ System

Compound	Temperature	Heating	Lattice constant (Å)			
	(°C)	(day)	a	с		
InFeZn ₁₀ O ₁₃	1450	7	3.272(1)	64.02(1)		

and the lattice constants for each compound are shown in Table IIId.

[V] In the In₂O₃-Fe₂O₃-ZnO system, we already reported InFeO₃(ZnO)_n (n = 1-9).

TABLE IIIc

The Conditions of Synthesis and the Lattice Constants for the Compounds Obtained in the $Tm_2O_3-A_2O_3-ZnO$ System (A = Fe or Ga)

	Temperature	Heating	Lattice constant (Å)		
Compound	(°C)	(day)	а	c	
 TmFeZnO₄	1450	1	3.449(1)	25.28(1)	
TmFeZn ₅ O ₈	1450	1	3.315(1)	56.61(1)	
TmFeZn ₆ O ₉	1450	1	3.316(1)	42.87(1)	
TmFeZn ₇ O ₁₀	1450	1	3.306(1)	72.57(3)	
TmFeZn ₈ O ₁₁	1450	3	3.301(1)	53.42(1)	
TmFeZn ₉ O ₁₂	1450	6	3.294(1)	87.77(1)	
TmFeZn ₁₀ O ₁₃	1450	6	3.285(1)	63.74(1)	
TmGaZnO ₄	1350	1	3.430(1)	25.07(1)	
TmGaZn ₂ O ₅	1300	11	3.392(1)	21.93(1)	
TmGaZn ₃ O ₆	1450	3	3.357(1)	40.70(1)	
TmGaZn ₄ O7	1450	3	3.331(1)	32.38(1)	
TmGaZn5O8	1450	3	3.314(1)	56.50(1)	
TmGaZn ₆ O9	1450	4	3.309(1)	42.84(1)	
TmGaZn7O10	1450	4	3.300(1)	72.11(1)	
TmGaZn ₉ O ₁₂	1450	3	3.292(1)	87.70(1)	

TABLE IIIf

The Conditions of Synthesis and the Lattice Constants for the Compounds Obtained in the $R_2O_3-A_2O_3-MO$ Systems (R = Sc, In, Lu, Yb, Tm, or Y; A = Fe(III), Ga, Cr, or Al; M = Mg, Mn, Co, Cd, or Ni)

	Temperature	Heating	Lattice constant (Å)			
Compound	(°C)	(day)	а	с		
ScGaMgO4	1400	7	3.272(1)	25.62(1)		
ScAlMgO ₄	1400	8	3.236(1)	25.15(1)		
InAlMgO ₄	1550	2	3.290(1)	25.66(1)		
ScAlMnO ₄	1400	5	3.260(1)	25.98(1)		
InFeMnO ₄	1100	5	3.356(1)	26.40(1)		
InAlMnO4	1500	5	3.319(1)	26.21(1)		
InAlCoO ₄	1400	7	3.301(1)	25.74(1)		
ScAlCoO ₄	1400	13	3.247(1)	25.19(1)		
InAlCdO ₄	1000	7	3.321(1)	27.50(1)		
InGaFeO ₄	1000	1	3.313(1)	26.17(1)		
LuGaFeO4	1100	4	3.430(1)	25.31(1)		
YbGaF c O₄	1100	12	3.447(1)	25.18(1)		
TmGaFeO₄	1100	12	3.466(1)	25.07(1)		
YFeZnO ₄	1450	3	3.489(1)	25.20(1)		
InFeNiO ₄	1200	10	8.601(1)	(spinel)		
InCrNiO ₄	1300	7	8.553(1)	(spinel)		
In ₂ MnO ₄	1000	7	9.000(1)	(spinel)		
In2MgO4	1550	2	8.864(1)	(spinel)		
			8.81(1)	(spinel)		
			(15)			

The Summary of the Crystal Structures of $InFeO_3$ (ZnO) ₁₀ and YbAlO ₃ (ZnO) ₁₁									
	Lattice constants (Å)		Space						
Compounds	а	с	group	z	и	w	x	p	c (Å)/p
$InFeO_3(ZnO)_{10}$ YbAlO_3(ZnO)_{11}	3.272(1) 3.273(1)	64.02(1) 102.60(2)	P6 ₃ /mmc R3m	2 3	1×2 1×3	1×2 1×3	9 × 2 10 × 3	26 42	2.462 2.443

TABLE IVa							
DV OF THE CONSTANT STRUCTURES OF InE_0 (7n0)	UND VI						

Note. z, Molecular numbers in a unit cell; u, number of $InO_{1.5}$ layers or $YbO_{1.5}$ layers; w, number of (Fe, Zn)O_{2.5} layers or (Al, Zn)O_{2.5} layers; x, number of ZnO layers; p, number of oxygen layers.

InFeO₃(ZnO)₁₀ was newly prepared in the present work, and the condition of synthesis and the lattice constants are shown in Table IIIe. InFeO₃(ZnO)₁₀ is brown.

Based upon the construction rules in the $(YbFeO_3)_nFeO$ (n = 1, 2, 3 ...) structures and the $InFeO_3(ZnO)_n$ (n = 1-9) structures, we easily estimated the crystal structures of

InFeO ₃ (ZnO) ₁₀		InFeO ₃ (ZnO) ₁₀				YbAlO ₃ (ZnO) ₁₁			YbAlO ₃ (ZnO) ₁₁		
In	(Fe, Zn) or Zn	0	In	(Fe, Zn) or Zn	0	Yb	(Al, Zn) or Zn	0	Yb	(Al, Zn) or Zn	0
	e	g		g	e		e	g		f	g
	g	e		e	g		g	e		g	f
		g		g	e			g		f	g
e					g	e				g	f
		f	e					f		f	g
	f	e			f		f	e			f
	e	f		f	е		e	f	g		
	f	e		e	f		f	e			e
	e	f		f	e		e	f		e	g
	f	e		e	f		f	e		g	e
	e	f					e	f		e	g
	f	e					f	e		g	e
	e	f					e	f		e	g
	f	e					f	e		g	e
	e	f					e	f		e	g
	f	e					f	e		g	e
		f					e	f		e	g
e								e		g	e
		g				f				e	g
	g	e						g		g	e
	e	g					g	f			g
	g	e					f	g	e		
	e	g					g	f			f
	g	e					f	g		f	e
	e	g					g	f		e	f
	g	e					f	g		f	e
	e	g					g	f			

TABLE IVb The Stacking Sequences of InFeO3(ZnO)10 and YbAlO3(ZnO)11

Note. e, f, and g have the same meanings as in Ref. (11).

FIG. 1. (a-d) The classifications of the crystal structures for the compounds with $(RAO_3)_m(MO)_n$ type of stoichiometry in the $R_2O_3-A_2O_3-MO$ system. The numbers along the right vertical axis indicate the six-coordinated ionic radii given by Shannon and Prewitt $(O^{2^-} = 1.40 \text{ Å})$ (16). •, K₂NiF₄ type; \blacktriangle , CaFe₂O₄ type; \blacksquare , YbFe₂O₄ type; \blacklozenge , spinel type.

InFeO₃(ZnO)₁₀ and YbAlO₃(ZnO)₁₁ compounds. The summary of their crystal structures are shown in Table IVa. The stacking sequences of the InO_{1.5}, (FeZn)O_{2.5} (or (AlZn)O_{2.5}), and ZnO layers for these compounds are given in Table IVb. The electron diffraction patterns and the high-resolution images were already observed in LuFeO₃(ZnO)₂ and InGaO₃(ZnO)₅ (11).

[VI] In the $R_2O_3-A_2O_3-MO$ system (R = Sc, In, Lu, Yb, or Tm; A = Fe(III), Ga, or Al; M = Fe(II), Mg, Mn, Co, Cd, or Ni), we obtained InGaFe²⁺O₄, LuGaFe²⁺O₄, YbGaFe²⁺O₄, and TmGaFe²⁺O₄ com-

pounds which are isostructural with Yb Fe_2O_4 compound (3). All of the compounds are black and do not attract a hand magnet at room temperature. In the previous paper (7), we reported on $InGaFe^{2+}O_4$ compound with spinel structure (a = 8.400(1) Å) which was obtained at 1000°C for 10 days. Under the present experimental condition, T = 1000°C for 1 day, we obtained $InGaFe^{2+}O_4$ with YbFe₂O₄ type of structure. We may consider that there exists a phase transformation between YbFe₂O₄ and spinel structures in this compound. All of the ScGaMgO₄, ScAlMgO₄, InAlMgO₄, InAlMcO₄, InAlCoO₄,

Carpound	Reference	Campound	Reference	Compound	Reference
(LaFeO3) 2BaO	Mat.Res.Bull., <u>6</u> ,341(1971)	YFeO3 (MnO)	J.Solid State Chem., <u>40</u> ,109(1981)	LuFeO ₃ (MnO)	ibid., <u>40</u> ,109(1981)
LaFe03(SrO)	J.Solid State Chem., 2, 343(1970)	YFeO ₃ (FeO)	1b1d., <u>13</u> ,176(1975)	(LuFeO ₃) ₂ FeO	ibid., <u>17</u> ,49(1976)
LaFe03 (Ca0) 2	Mat.Res.Bull., <u>11</u> ,1219(1976)	YFeO ₃ (ZnO)	present work	LuFeO3 (FeO)	1b1d., <u>17</u> ,49(1976)
PrFeO ₃ (SrO)	J.Solld State Chem., 2, 343(1970)	lloFe03(Fe0)	J.Solid State Chem., 23, 43(1978)	LuFeO ₃ (ZnO) _m	present work
(ttdFe03) 2Ba0	J.Solid State Chem., 40, 14(1981)	HoFeO3(2nO)	to be published	LuFe03(CoO)	J.Solid State Chem., 40,109(1981)
NdFeO ₃ (BaO)	Mat.Res.Bull., <u>6</u> ,341(1971)	Erreo3 (MnO)	J.Solid State Chem., 40, 109(1981)	LuFeO3 (CuO)	1bid., <u>40</u> ,109(1981)
(NdFeO3) 2SrO	J.Solid State Chem., 40, 14(1981)	Erfe03(FeO)	Bull.Chem.Soc.Japan, <u>49</u> ,998(1976)	LuFeO ₃ (MgO)	1b1d., <u>40</u> , 109(1981)
HdFeO3(SrO)	1b1d., <u>2</u> ,343(1970)	ErFeO ₃ (2n0)9	present work	InFeO ₃ (CaO)	to be published
NdFeO3(CaO)	Mat.Res.Bull.,14,1601(1979)	ErFe03(1900)	J.Solid State Chem., 40,109(1981)	InFeO3(CdO)	to be published
(ShifeO3)2BaO	J.Solid State Chem., 40, 14(1981)	ThrFeO3 (MnO)	1bid., <u>40</u> , 109(1981)	InFeO3 (MnO)	present work
SufeO ₃ (BaO)	1b1d., <u>6</u> ,341(1971)	(Threo3)2Feo	1bid., 23,43(1978)	InFeO ₃ (FeO)	J.Solid state Chem., <u>60</u> , 382(1985)
(SnFeO3)2SrO	1b1d., <u>40</u> , 14(1981)	TmFeO ₃ (FeO)	1b1d., <u>23</u> , 43(1978)	InFeO3(ZnO) _m	ibid., in press(1988)
SuFeO3(SrO)	1b1d., <u>2</u> ,343(1970)	Threed (2n0)m	present work	InFeO ₃ (CoO)	1b1d., <u>53</u> ,217(1984)
(EuFeO ₃) ₂ BaO	ibid., <u>40</u> ,14(1981)	Threed ₃ (CoO)	J.Solid State Chem., 40,109(1981)	(InFeO ₃) ₃ CuO	ibid., <u>53</u> ,217(1984)
EuFeO3 (BaO)	Mat.Res.Bull., <u>6</u> ,341(1971)	Threo3(CuO)	ibid., <u>40</u> ,109(1981)	(InFeO ₃) ₂ CuO	ibid., <u>53</u> ,217(1984)
(EuFeO ₃) ₂ SrO	J.Less-Comm.Metals, <u>37</u> , 281(1974)	TmFeO3 (MgO)	1b1d., 40, 109(1981)	InFeO ₃ (CuO)	ibid., <u>53</u> , 217(1984)
Eufe03(Sr0)	ibid., <u>37</u> ,281(1974)	YbFeO ₃ (MnO)	1b1d., 40, 109(1981)	InFeO ₃ (MgO)	1bid., <u>60</u> , 382(1985)
(GdFeO ₃) ₂ BaO	J.Solid State Chem., 40, 14(1981)	(YbFeO ₃) ₃ FeO	Acta Cryst., B <u>35</u> ,561(1979)	InFeO ₃ (NiO)	present work
(GdFeO ₃) ₂ SrO	ibid., <u>40</u> ,14(1981)	(YbFeO3) 2FeO	J.Solid State Chem., <u>15</u> , 191(1975)	ScFeO3 (CaO)	to be published
GdFeO ₃ (SrO)	ibid., <u>2</u> ,343(1970)	YbFeO3 (FeO)	ibid., <u>15</u> , 191 (1975)	ScFeO3 (MnO) 2	J.Solid State Chem., submitted(1988)
(TbFeO ₃) ₂ SrO	ibid., <u>7</u> ,337(1973)	YbFeO3(ZnO) _m	present work	ScFeO3(ZnO)m	ibid.,in press(1988)
TbFeO ₃ (SrO)	ibid., <u>2</u> ,343(1970)	YbFeO ₃ (CoO)	J.Solid State Chem., 40,109(1981)		
		YbFeO3(CuO)	ibid., 40, 109(1981)		
		YbFeO3 (MgO)	ibid., <u>40</u> ,109(1981)		

BIBLIOGRAPHIES FOR THE COMPOUNDS IN FIG. 1a

TABLE Va

KIMIZUKA AND MOHRI

Compound	Reference	Compound	Reference	Compound	Reference
LaGaO ₃ (SrO)	J.C.P.D.S.,No.24-1208	TmGaO3(ZnO)m	present work	InGaO ₃ (CoO)	tbid.,53,217(1984)
LaGaO ₃ (CaO)	Rev.Chim.Mineral, 11, 327(1974)	TmGaO ₃ (CoO)	J.Solid State Chem., 41, 166(1982)	(InGaO ₃) _m CuO	1b1d., 53, 217(1984)
PrGaO ₃ (SrO)	Z.anorg.allg.Chem., 433, 275(1977)	ThirdaO ₃ (CuO)	ibid., <u>41</u> ,166(1982)	InGaO ₃ (MgO)	ibid., <u>60</u> ,302(1985)
PrGaO ₃ (CaO)	Rev.Chim.Mineral, <u>11</u> ,327(1974)	TmGaO ₃ (1490)	ibid., <u>41</u> ,166(1982)	InGaO3 (NIO)	ibid., <u>60</u> , 382(1985)
NdGaO3(SrO)	J.C.P.D.S., No. 24-1191	YbGaO3 (MnO)	ibid., <u>41</u> , 166(1982)	ScGaO ₃ (MnO) ₂	ibid., submitted(1988)
NdGaO ₃ (CaO)	J.C.P.D.S., No.27-1050	YbGaO3 (FeO)	present work	ScGaO ₃ (ZnO) _m	ibid., in press (1988)
SmGaO ₃ (SrO)	Z.anorg.allg.Chem., <u>433</u> ,275(1977)	YbGaO3(ZnO)m	present work	(ScGaO ₃) ₂ CuO	ibid., <u>60</u> , 382(1985)
SmGaO ₃ (CaO)	Rev.Chim.Mineral, 11, 327(1974)	YbGaO ₃ (CoO)	J.Solid State Chem., 41, 166(1982)	ScGaO ₃ (CuO)	<u> 1</u> bid., <u>60</u> , 382(1985)
EuGaO3(SrO)	Z.anorg.allg.Chem., 433, 275(1977)	YbGaO3 (CuO)	ibid., <u>41</u> ,166(1982)	ScGaO ₃ (MgO)	present work
EuGaO ₃ (CaO)	Rev.Chim.Mineral, 11, 327(1974)	YbGaO3 (NgO)	ibid., <u>41</u> ,166(1982)		
GdGaO3 (SrO) 2	Z.anorg.allg.Chem., 433, 275(1977)	LuGaO3 (MnO)	1b1d., 41, 166(1982)		
GdGaO ₃ (CaO)	Rev.Chim.Mineral, <u>11</u> , 327(1974)	LuGaO ₃ (FeO)	present work		
TbGaO ₃ (SrO)	Z.anorg.allg.Chem., 433, 275(1977)	LuGaO3(ZnO) _m	present work		
TbGaO ₃ (CaO)	Rev.Chim.Mineral, <u>11</u> , 327(1974)	LuGaO ₃ (CoO)	J.Solid State Chem., <u>41</u> ,166(1982)		
DyGaO3(CaO)	1bid., <u>11</u> , 327(1974)	LuGaO ₃ (CuO)	1b1d., <u>41</u> , 166(1982)		
YGaO3 (MnO)	J.Solid State Chem., 41, 166(1982)	LuGaO3 (MgO)	1b1d., <u>41</u> , 166(1982)		
HoGaO3 (MnO)	1b1d., <u>41</u> , 166(1982)	InGaO3(CaO)	to be published	<i>A</i>	
ErGaO ₃ (MnO)	ibid., <u>41</u> , 166(1982)	InGaO3(CdO)	Z.anorg.allg.Chem., <u>341</u> ,252(1965)		
ErGaO3(2nO)m	present work	InGaO ₃ (CdO)	J.Solid State Chem., (to be submitted)		
ErGaO ₃ (MgO)	J.Solid State Chem., <u>41</u> , 166(1982)	(InGaO ₃) ₂ MnO	1b1d., <u>60</u> , 382(1985)		
ThrGaO ₃ (MnO)	1b1d., <u>41</u> , 166(1982)	InGaO ₃ (MnO)	1bid., <u>60</u> , 382(1985)		
ThnGaO ₃ (FeO)	present work	InGaO ₃ (FeO)	1bid., <u>60</u> , 382(1985)		
		InGaO ₃ (FeO)	present work		
		InGaO ₃ (ZnO) _m	ibid., in press(1988)		

TABLE Vb Bibliographies for the Compounds in Fig. 1b

KIMIZUKA AND MOHRI

	DIBEIOGRAPHIES FOR THE		
Compound	Reference	Compound	Reference
LaAlO ₃ (SrO)	C.R.Acad.Sci.Paris,Ser.C <u>274</u> ,1837(1972)	YbA1O3(ZnO)m	present work
LaAlO3(CaO)	Bull.Soc.Chim.France, <u>10</u> ,3408(1970)	LuAlO3(MnO)	J.Solid State Chem., <u>41</u> ,166(1982)
CeAlO ₃ (SrO)	2.Naturforsch., B <u>27</u> ,888(1972)	LuAlO3(ZnO)m	present work
Pralo3(SrO)	C.R.Acad.Sci.Paris,Ser.C <u>274</u> ,1837(1972)	InAlO3(CaO)	to be published
PrA103(CaO)	Bull,Soc.Chim.France, <u>10</u> ,3408(1970)	InA103(CdO)	Z.anorg.allg.Chem., <u>341</u> ,252(1965)
NdA103(SrO)	J.C.P.D.S.,No.24-1188	InAlO3(MnO)	present work
NdAlO3(SrO)2	J.C.P.D.S., No. 31-1335	InA103(2nO)m	J.Solid State Chem., in press(1988)
(NdAlO3)2SrO	J.C.P.D.S.,No.31-1334	InA103(CoO)	present work
NdA103(CaO)	Bull.Soc.Chim.France, <u>10</u> ,3408(1970)	(InAlO3) 2000	J.Solid State Chem., <u>60</u> ,382(1985)
SmA103(SrO)	J.C.P.D.S.,No.24-1190	InAlO3(CuO)	ibid., <u>60</u> ,382(1985)
SmA103(CaO)	Bull.Soc.Chim.France, 10, 3408(1970)	InA103(NgO)	present work
EuAlO3(SrO)	C.R.Acad.Sci.Paris,Ser.C <u>274</u> ,1837(1972)	InAlO3(NiO)	Z.anorg.allg.Chem., <u>341</u> ,252(1965)
EuA103(CaO)	Bull.Soc.Chim.France, <u>10</u> ,3408(1970)	ScAlO3(MnO)	present work
GdAlO ₃ (SrO)	J.C.P.D.S.,No.24-1185	ScAlO3(ZnO)m	J.Solid State Chem., in press(1988)
GdA103(CaO)	Bull.Soc.Chim.France, <u>10</u> ,3408(1970)	ScA103(CoO)	present work
DyAlO ₃ (CaO)	ibid., <u>10</u> ,3408(1970)	(ScA103)2CuO	J.Solid State Chem., <u>60</u> ,382(1985)
YAlO3(CaO)	ibid., <u>10</u> ,3408(1970)	ScAlO3(CuO)	ibid., <u>60</u> ,382(1985)
HoAlO3(CaO)	ibid., <u>10</u> ,3408(1970)	ScA103(MgO)	present work
ErAlO ₃ (CaO)	1bid., <u>10</u> ,3408(1970)		
TmA103(MnO)	J.Solid State Chem., <u>41</u> ,166(1982)		
TmAlO3(ZnO) _m	present work		
YbAlO3(MnO)	J.Solid State Chem., <u>41</u> ,166(1982)		· · · · · · · · · · · · · · · · · · ·

TABLE Vc

BIBLIOGRAPHIES FOR THE COMPOUNDS IN FIG. 1c

ScAlCoO₄, InAlCdO₄, and YFeZn O₄ are isostructural with YbFe₂O₄ compound. All of the InFeNiO₄, InCrNiO₄, In₂MnO₄, and In₂MgO₄ have a spinel structure. ScGaMgO₄, ScAlMgO₄, InAl MgO₄, and In₂MgO₄ are colorless, YFeZn O₄ is brown, and the other compounds are black. The conditions of synthesis and the lattice constants for each compound are shown in Table III(f).

InCrMO₄ and InANiO₄ compounds having YbFe₂O₄ structure have not yet been reported. Since both Cr(III) and Ni(II) have a tendency to take six coordination number of oxygen ions in oxide compounds, In CrMO₄ and InANiO₄ having YbFe₂O₄ structure may be considered to be unstable. The *d*-spacings and relative intensities of the powder X-ray diffraction for each compound reported in Tables IIIa–IIIf will be sent to the Joint Committee of Powder Diffraction Standards.

In Figs. 1a-1d, we show the dependence of the crystal structure of $(RAO_3)_m(MO)_n$ type of compounds (R = Sc, In, Y, or lanthanide elements; <math>A = Fe, Ga, Al, or Cr; M= divalent cation elements; m and n = integer). These data are taken from the present paper and bibliographies shown in Tables Va-Vd. We can easily recognize that K₂ NiF₄ type of compounds are in the region of both the larger R and the larger M cations, and YbFe₂O₄ type of compounds are in the region of both the smaller R and the

 TABLE Vd

 Bibliographies for the Compounds in Fig. 1d

Campound	Reference
$La(rr0_2(Sr0))$	J.Solid State Chem., 22, 121(1977)
PrCrO ₃ (SrO)	ibid.,2,343(1970)
PrCrO ₃ (CaO)	ibid., <u>5</u> ,57(1972)
NdCrO3(SrO)	ibid., <u>22</u> , 121 (1977)
NdCrO3(CaO)	1bid.,5,57(1972)
SmCrO3(SrO)	1bid., <u>22</u> , 121(1977)
SmCrO3(CaO)	ibid., <u>5</u> ,57(1972)
EuCrO3(SrO)	ibid., <u>22</u> ,121(1977)
EuCrO3(CaO)	ibid., <u>5</u> ,57(1972)
GiCrO3(SrO)	ibid., <u>22</u> ,121(1977)
GdCr03(CaO)	ibid., <u>5</u> ,57(1972)
TbCrO3(SrO)	ibid., <u>22</u> ,121(1977)
DyCrO3(SrO)	ibid., <u>22</u> ,121(1977)
InCrO3(MnO)2	J.Solid State Chem., submitted(1988)
InCrO ₃ (CoO)	Z.anorg.allg.Chem., <u>341</u> ,252(1965)
InCrO3(MgO)	J.Solid State Chem., submitted(1988)
InCrO ₃ (NiO)	Z.anorg.allg.Chem., <u>341</u> ,252(1965)
ScCrO3(MnO)	J.Solid State Chem., submitted(1988)

smaller M cations. In the region of the smaller R and the larger M cations we can see the CaFe₂O₄ type of compounds. However, we cannot see any compounds in the field of the larger R cations and the smaller M cations. In the field of both the smallest R and the smallest M cations, we have the spinel type of compounds; however, InGa $Fe^{2+}O_4$, InFeCdO₄, and InGaCdO₄ may have both the spinel and YbFe₂O₄ type of structures. In addition to A = Fe, Ga, Cr, or Al, both Mn(III) and Cu(III) are candidate cations for constructing the K₂NiF₄ type of compounds (12-14). We will study whether or not there exist $RCu^{3+}MO_4$ and $RMn^{3+}MO_4$ compounds with YbFe₂O₄ type of structures in the near future. It is well known that the cite preference effect should be considered in addition to the size effect of the constituent cations in the oxide compounds when we show the relation between the crystal structure and the constituent cation. However, we can roughly classify the whole field of $R_2O_3-A_2O_3-MO$ systems into at least four subterritories of K_2NiF_4 , CaFe₂O₄, YbFe₂O₄, and spinel types, based upon the sizes of the constituent cations.

Acknowledgments

The authors express their sincere thanks to Dr. K. Siratori (Department of Physics, Faculty of Science, Osaka University, Japan) and Dr. E. Takayama-Muro-machi (NIRIM) for their helpful discussions.

References

- A. F. WELLS, "Structural Inorganic Chemistry," p. 490, Oxford Univ. Press (Clarendon), London/ New York (1975).
- N. KIMIZUKA, A. YAMAMOTO, H. OHASHI, T. SUGIHARA, AND T. SEKINE, J. Solid State Chem. 49, 65 (1983).
- K. KATO, I. KAWADA, N. KIMIZUKA, AND T. KATSURA, Z. Kristallogr. 141, 314 (1975).
- 4. O. SCHMITZ-DUMONT AND H. KASPER, Z. Anorg. Allgem. Chem. **341**, 252 (1965).
- N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 40, 109 (1981).
- N. KIMIZUKA AND E. TAKAYAMA, J. Solid State Chem. 41, 166 (1982).
- 7. N. KIMIZUKA AND T. MOHRI, J. Solid State Chem. 60, 382 (1985).
- N. KIMIZUKA, K. KATO, I. SHINDO, I. KAWADA, AND T. KATSURA, Acta Crystallogr. Sect. B. 32, 1620 (1976).
- 9. Y. MATSUI, K. KATO, N. KIMIZUKA, AND S. HORIUCHI, Acta Crystallogr. Sect. B 35, 561 (1979).
- K. KATO, I. KAWADA, N. KIMIZUKA, I. SHINDO, AND T. KATSURA, Z. Kristallogr. 143, 278 (1976).
- 11. N. KIMIZUKA, T. MOHRI, Y. MATSUI, AND K. SIRATORI, J. Solid State Chem. 74, 98 (1988).
- M. N. DESCHIZEAUX CHERUY, AND J. C. JOUBERT, J. Solid State Chem. 40, 14 (1981).
- 13. A. BENABAD, A. DAUDI, R. SALMON, AND G. LEFLEM, J. Solid State Chem. 22, 121 (1977).
- 14. J. B. GOODENOUGH, D. DEMAZEAUX, M. POUCH-ARD, AND P. HAGENMULLER, J. Solid State Chem. 8, 325 (1973).
- R. W. G. WYCKOFF, "Crystal Structures," 2nd. ed., Vol. III, p. 80, Interscience, New York (1960).
- 16. R. D. SHANNON AND C. T. PREWITT, Acta Crystallogr. Sect. B 25, 925 (1969).